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Abstract 

Using the linearized theory of general relativity the gravitationally radiated energy 
emitted from a galactic model consisting of N gravitational radiators is calculated. The 
results are presented in terms of the lowest order contributing multipole moments 
(quadrupole), the orientations of radiators about a common reference frame, the distances 
between pairs of radiators and the frequency of each radiator. From this model it is 
hoped that a reasonable lower bound to the gravitational energy flux from the galactic 
core can be computed. 

1. Introduction 

In recent times much interest has been shown in the results of  Professor 
Weber 's  experiments to detect gravitational radiation (Weber, 1969). He 
claims that his results indicate the existence of  energy carrying gravitational 
radiation and a probable source being the galactic core (Weber, 1971). 
To date there are no adequate models of  a galaxy that can be used to 
determine a quantitative analysis of  gravitational energy flux�9 This paper  
presents a galactic model that can be used for the calculation of gravita- 
tional radiation f rom such a source. 

Einstein (1918) initiated the study of  gravitational radiation when he 
calculated the energy flux emanating from a single isolated source within 
the framework of  the linearized theory of  general relativity (Landau & 
Lifshitz, 1965). He found that, to quadrupole order, the power loss is 

�9 G .../~ 
E=-4-~gcs D JD "a (1.1) 

where 

D ~p = f p(3~ �9 r - 6~P r ~) d 3 

is the quadrupole moment  of  the source�9 

(1.2) 

Recently, Cooperstock & Booth (1969) presented a paper in which was 
calculated the total power loss f rom a binary system and found that not 
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only do the individual sources radiate independently of each other but 
that there is also a power loss due to their mutualinteraction. Unfortunately, 
as a consequence of the restricted orientation imposed on the relative 
separation of the two sources in the CB binary system, a galactic model 
cannot be built by adding the effects of pairs of arbitrarily orientated 
sources. 

Here the problem is attacked anew and the restrictive orientation 
condition is omitted. In Section 2 the interaction power emitted by an 
arbitrary radiator pair is developed and the galactic model is taken as the 
algebraic sum of such pairs. A discussion follows in Section 3. 

2. Interaction Power 

The energy-momentum conservation laws in general relativity for a 
material stress-energy distribution T ~k are given ast 

T~k..k = 0 (2.1) 

and can be expressed in the form of an ordinary divergence 

[ ( V - g )  (T? + = 0 (2.2) 

where the energy-momentum pseudotensor (Moller, 1966) 

C4 ~ lm Im (V-g )  t, k = ~ [( ~ / a g  ,k) g ,, - 6, k ~,e] (2.3) 

= ('v'--g) g'k[F~k F?m -- Fl,,, F'ffz] (2.4) 

For weak fields (Weber, 1961 ; Trautman, 1962) 

C 4 

(a / -g)  t~ k = 64zrG [(2~f, t  ~b a'k -- ~Paa,~ ~b b'k) 

+ ~ i krl~/,~ a~ .c ~/' bb'c -- ~ab . ~ ~ ' ~ ) ]  (2.5) 

where 

J dar T, (t - R/c) ~ (2.6) 

are the retarded potential solutions to Einstein's linearized field equations. 
Setting i =  0 in equation (2.2), integrating over a volume V which 

contains the material distribution and applying the Gauss theorem yields 
the total energy-loss rate 

= - c ~  ( V - g )  to ~ n~ dS  (2.7) tot ~ 

"~ A semicolon denotes covariant differentiation. 
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Taking the material distribution to consist of  N radiators,t then if ~,a b 
denotes the field of  the ith radiator, the total field is 

N (i) 
7, b =  y. Cob (2.8) 

l=1 

From equations (2.5) and (2.8) it can be seen that equation (2.7) consists 
of  two types of  integral; one type containing terms quadratic in the field 
of a given radiator and the other containing products of  fields of pairs of  
radiators. The sum of all integrals of  the former type yields the power 
loss of  the radiators in the absence of  interaction and the latter integrals 
yield the interaction power between pairs of  radiators. 

The interaction power between the pth and the qth radiators is found 
to be 

--Cs J(~ / [ (p) (q) (q) (P) /2.1, b a, ~.~ + 2,t, b ~pb~,~ 
-"" = 64rig v ,  ,ov'b ~', .o 

(p) re) (a) (p) 'I 
,I, a ,l ,  b ,~  ,I, a ,I, b , , l  n d S  - - v . . o ' e l ,  --Va.OVb ] ~ (2.9) 

Since equation (2.9) can be evaluated over the infinite sphere the use of 
asymptotic fields is justified for arbitrary radiator pair separations Lpq. 

The retarded potential solution of  Einstein's linearized field equations 
for a radiator field is 

~'~ = ~ T'~(~ :, t - f (2.10) 
d a 

~lC) 

where ~" are spatial sources variables and/~ is the source-point to field-point 
distance.~ The geometrical arrangement is illustrated in Fig. 1. We have 

P 

K 

1 

FIGURE I 

t The word 'radiator'  is used throughout to denote a material stress-energy distribution. 
:~ The bar over the quantities in equation (2.10) imply a specific radiator. 
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/~2 = ( .~  _ ~ ) 2  = f z  _ 22, ~ + {, ~ (2.11) 

where 
= ( ~  0V)l/2 

is the distance from the origin (placed at the centre of mass) to the field 
point P. 

The T ~k are now expanded about the retarded time t - Uc 

T'k(~ ~, t - -  t~/c) = T 'k + ( f  - _R) T 'k .o  

+ �89  T'k + (2.12) 
) , 0 0  �9 �9 �9 

--JR where T ~k, T~k,o, T ,oo... are evaluated at t -  f / c .  For the calculation of 
asymptotic fields, it can be taken that since 

2 �9 
_ ~i~ and R_- = f - ~ (2.13) 

f 

then 
e-R=G~" 

(2.14) 

Equations (2.12) to (2.14) in conjunction with equation (2.10) yield 

~tk 4G f t~ ~ T  ik r ~  t •c) =c~ [T'k(Gt-e/c)+ ~ , o , ~ ,  - 

+ . . . 1  d 3 ~ (2.15) 

Equation (2.15) gives a radiator field expanded about a retarded time 
relative to its own centre of mass. Since we have a number of radiators it 
is required to expand the field of each about a common retarded time; 

P 

E r 

3 

i3 1 

FIGURE2 

the common retarded time being relative to a chosen common origin O. 
From Fig. 2 it is seen that, for asymptotic fields, since 

~ = r - / [ ,  (2.16) 
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?___r- _L.n 

& e n= (2.17) 

f - 1  ___ r - 1  

Consequently equation (2.15) can be written as 

f ~,k = ~ [Tik(~ :, t - r/c + s n_/c) 

+ n : ~ : T ' k , o ( ~ : , t - r / c + L _ . n _ / c ) +  . . . ]d3~ (2.18) 

Following Papapetrou (1962) and CB, the time-dependent field com- 
ponents to lowest multipole order can be simply expressed as 

~B = 4_G_G _~r~a (2.19) 
r r 

where 

Also 

3~ "a = f T "a d 3 ~ = �89 oo and d~a = f Too ~ ~B d 3 ~ (2.20) 

~ o  = ff~n~ and ~oo = ~ B n a n ~  (2.21) 

To evaluate the interaction power, equation (2.9), the integrand is 
required to order r-2, hence it is sufficient to set 

~l~J,= = - -~iJ ,o  no~ (2.22) 

Using equations (2.18) to (2.22) in conjunction with equation (2.9) the 
interaction power between the pth and the qth radiators can be written as 

72~zcS J ~ D ' " D ~ ~  2D~t~D't~)d~2 (2.23) 

where 

and 

dO = r-2 d S  (2.24) 

(i) (i) (i) 
D "a = D~a(t - r/c + L .  n_/c) i = p,  q 

1 u)  (i) 
= ~ (3d ~ - ~"  d ~) (2.25) 

c 

are the quadrupole moments of the radiators. ~o 
Taking the ith radiator to be periodic t with frequency co, then 

,,) {u) ( [ ( , )  ") ~') l" J / /  
D~"=Re  A'"exp i c o ( t - - r / c + _ L . n / c ) + 7 | | }  (2.26) 

t See Discussion, Section 3. 
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( 0  ( 0  
where A "# is a complex amplitude and ~ is a phase angle. Thus 

(l)  (f) (O 
D ~a = Re O~#(t - r/c + _L. n/c) 

and 

where 

(2.27) 

(0  (0  
(0  o ) L  
k = - -  (2.29) 

r 

When equations (2.26) to (2.29) are substituted into equation (2.23) for 
the pth and the qth radiators we obtain terms involving quadratic products 
of  cosines, quadratic products of sines and products of a cosine and a sine. 
Only those terms involving a product of an even number of components 
of  the unit normal give a non-vanishing contribution (Booth, 1970) and 
consequently we neglect the odd functions obtained from the products 
of a cosine and a sine. 

A typical quadrupole product in the integrand of equation (2.23) then 
becomes 

(.P.). (.~) I(.P.? (q) -(~) ('~-) ~ ( f "(p) (,~)" 

{(P) (q) (P) (q) "l [COS (P) (q) 

where, on the right-hand side of equation (2.30) 

(0 (0 
D ~'# = D 'a ( t  - r /c)  i = p ,  q 
(0  (l) / 

To facilitate computation of the integrals involved in equation (2.23) 
(p) (q) 

ppq = k + k = ppq fl 

(P) (q) 
*Pro  = k - k = *ppq* n " (2.32) 

are defined, where _h and *_h are fixed unit vectors which specify the orienta- 
tion of  Op and O~ relative to O.t  

From equations (2.23) and (2.30) it is seen that 

ppe. n = p~e n ,  (--- ppq h" n=) 
, r *pp~. n = pp,  n ,  (- *pp,* f :  n , )  (2.33) 

"~ Op and Oq are the centres of mass of radiators p and q respectively, O is the common 
origin. 

(i) (i) (i) (1) (i) 
D~a(t - r /c  + _L .n_/c) = {cos_k._n + i sin_k.n} D~a(t - r /c)  (2.28) 
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In order to evaluate the integral of equation (2.23) it is now required to 
evaluate integrals of the type 

f cos (P,o n<0) dO 
4~t 

f n~n~ (Pon,,,) dI2 (2.34) COS 

and 

f n,, nan,, n,~ cos (po no) dO 
4= 

The results of the integrations are given in the Appendix. Equations (A.6) 
to (A.8), (2.30) and (2.33), in conjunction with equation (2.23), yield the 
interaction power between the pth and the qth radiators as~f 

G t , ' ,o  (,. (,,) (<,) ~ r l  9. _ l l i ) : a b :  ~ ~. ,,. 6 6 . 

P pq P'pq l 

l(p) (q) --- 4 -r ) sin (~p~bD ~ (P) (~) \ r t  36 60 
+ Ppq 

\ # 

[ 16 60] ] 
+ / - - ~ -  + ~ - I  cos Ppq/n~ha 

\ Ppq Pp~/ J 
/(e.) (~). (e). (~). x r /  I 

+ / D~,6 + --~--/Sln ppq 
\ D~a - -  ~ L\PPq p3pq ppq ] 

1(,) (q) 6 6 \ 
+ 

] L \  ppq "~-~3 i,.,pq ) sin*ppq 
\ 

6 , 

60 . 1(2.) (.q.) ~.e) (~-) '~[ /  4 36 *ppq sin 

[ 16 60 \ *ppq] *h~ *h a 

+t-%+%) 
/ (p)  (q) (p) (a) \ [ [  1 + . l~ "  a ~,, f  _i_/3<< , ~,<~j/(.~_.,_..,, 45 10__55'~ . . 

p .  

*7,'3 c~ P'~ " (2.35) 

f/~p~ could be evaluated to higher multipole order by retaining higher order terms in 
equation (2.18). 
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The total interaction power of a system of N such radiators is then 
N 

int/~= �89 ~ /~pq (2.36) 
p,q=l  
p~e 

If  in equation (2.35) the limit is taken as pp~---> 0 and *ppq--> 0 then 

-?(7, (..P9 ~q) 
lim /~p~ = ~ D ~~ ~a (2.37) 

PpqJ 

Letting p = q in equation (2.37) yields twice the energy-loss rate from the 
pth radiator in the absence of interaction. Consequently the total energy- 
loss rate for this galactic model is 

N 

tot/~= �89 E L'p. (2.38) 
p~q=l 

where 
/~pp = lim /~pq 

*~;~}-,o p=q (2.39) 

3. Discussion 

The model proposed is limited to weak fields and consequently takes no 
account of the existence of black holes. It does seem, however, reasonable 
to assume that, black holes apart, the galactic core consists of a large 
number of stars exhibiting 'classical' astrophysical phenomena and for this 
situation the model gives an adequate description of 'first order' effects as 
far as gravitational radiation is concerned. For this reason it is hoped that 
the results obtained in this paper will be useful for the interpretation of 
gravitational radiation experiments and for the computation of a reasonable 
lower bound to the gravitational energy flux from the galactic core or 
from the galaxy as a whole. No attempt has, as yet, been made to produce 
numbers from the results but as a guide to orders of magnitude it is easily 
seen that the total energy radiated from a system of similar radiators is 
approximately proportional to the square of the number of radiators; the 
constant of proportionality having an order of magnitude comparable to 
that of the radiation emitted by a single source in the absence of interaction. 

The assumption of a system of periodic radiators is not as restrictive as 
it might at first appear as it is always possible (under appropriate con- 
ditions) to Fourier analyse a non-periodic behaviour over a given time 
interval into a series of periodic harmonics. 

It is hoped to complete this work by computing the linear and angular 
momenta radiated from this model in anticipation of more sophisticated 
experimental techniques and to give a more complete physical picture of 
the system. 
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APPENDIX 

The integrals presented here are extensions of the integrals tabulated 
by Booth (1970). 

The integrals in question are 

1 fcos(p, n,o)d  
4~ 

4~t 

Po = Pho (A. 1) 

1 / "  
J n~ na cos (Po no) d(~ (A.2) 

4g 
1 

I n~ nB n./n6 cos (po Hta) d~ (A.3) 
4~ 

4~ 

which are evaluated by means of the identity (Fock, 1964) 

47cl f (a,o no) 2p d~ = (2p(a~ a,0) v +  1) (A.4) 
4n 

In each integral we expand cos (port,o) to be 

cos (p,0 n,o) = 
2m 2m--t 

~ :2"C,.2"-"C~(p~nO2"-"-~(p2n2)~'(pana) ~ (A.5) 
m=0 r=0 s=0 

Substitution of (A.5) into (A. 1) to (A.3) and the use of (A.4) yields 

1 f cos (Po no) = sin p (A.6) 
47r., p 

'f 4-~ n~ nr cos (p~ no) d~2 = a 6~e 
4re 

+ b{hl 2 6~16~1 + ~2 2 6~2 6e2 + ~a 2 6~3 6~a 

+ ~ ~2(6,~ 6~ + 6~2 ~e~) + ~ ~a(6~ 6~a + 6~3 6e~) 
+ ~2 ~a(6~2 6~a + 6~a 6~2)} (A.7) 

4--~ n~,n~n./n6cos(p~,n,o) d O =  -b(6om6./6 + 6~./6e6 + 6~66tr., ) 
4~t 

-~ C{6~tB(/~l 2 8"/1 861 -~- h22 6y2 862 "~ h32 8./3 863) 

+ 6,./(/~12 8//1 861 "J~ /~22 632 862 -~- /~32 8//3 66a) 
+ 6~(1112 6~16~1 + 
+ 6~(t112 6~16~1 + 

h22 6~2 6~z + ~32 6~3 6~3) 
/'~22 5~t2 562 -~/~32 5~t3 (~63) 
/~22 (~t2 6~2 -~-/~32 (~t3 6~,3) 

-[- ~V6(H12 6ctl 5/~1 "q- /'~2 2 5~t 2 6fl2 "q- /~3 2 5gt3 5//3) 
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"SV ~(/11 n216B1 662 q- 6#2 6all q-/11/~316B1 6a3 "~- 6B3 661] 
+/12/1316/;2 6,+3 + 6/;3 6+2]) 

-~ 6"6(/11/1216/;1 6y2 "~- 6/; 2 6?1 ] W/11/1316/;1 6"13 ~- 6/;3 6?1] 
+/i2/1316/;2 6~,3 + 6/;3 672]) 

+ 6/;~.,(~1/1216,,1 662 + 6,,2 661] + ex/1316"1 663 + 6,,3 6,.] 
+/12/1316"2 6+3 + 6,,3 662]) 

+ 6B6(/11/1516"16~,2 + 6"2 6."d +/11/1316,. 6~3 + 6"3 6~d 
/12/13 [6"2 6?3 ~ 6"3 6"2]) 

+ 6~6(nl/1516"1 682 "~ 66t2 6/;1] "1-/11/1316"1 6+83 "i- 663 6/;1] 
-t-/12/1316~2 6/;3 + 6"3 6/;2])} 

q- d{(/113 6~1 6/;1 6~1 "q-/123 6"2 6/;2 6."2 "SF /133 6~3 6/;3 6~3) 
• (/11 661 -t- n2 662 q-/13 663) 

[/112/12(6"116/;1 6~2 ~ 6/;2 63,1] -~ 6" 2 6/;1 6."1) 
Jr- /122/11(6"216/;1 6?2 "~ 6/; 2 6."1] W 6~1 6/; 2 63,2) 
-~- /112 /13(6"116/;1 6."3 -]- 6/; 3 671] ~ 6~3 6/;I 6~1) 
+/132/11(6"s[6/;1 6."3 + 6/;3 6."3] + ,5,,1 6/;3 6."3) 
+ /122/130"216/;2 6?3 + 6/;3 6y2] + 6,~ 3 6/;2 6~2) 

/132/12(6"316/;2 6?3 ~ 603 6?2] "~ 6" 2 6/;3 6?3) 
"~/11/12/~S(6=l [6/;2 6?3 "~ 6/;3 6."2] -t- 6"2[6/;3 6."1 -[- 6#1 6~.,3] 
"q- 6"316,01 6."2 -~ 6/;2 6?1])] (/11 661 + /12 662 "-1- /13 663)} (A.8) 

where 

a = (_p-2  cos  p + p-3 sin p) 

b = (p-1 sin p + 3p -2 cos  p - 3p -3 sin p) (A.9)  

c = (_p-2  cos  p + 6p -3 sin p + 15p -+ cos  p - 15p -5 sin p) 

d = (p-~ sin p + 10p -2 cos  p - 45p -3 sin p - 105p -+ cos  p + 105p -5 sin p) 
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